Abstract

This article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the neural network and how the FNN is used in 2D and 3D position estimation process are presented. The most important results of the work are the parameters of various FNN network structures that resulted in a 100% probability of convergence of iterative position estimation algorithms in the exemplary TDoA positioning network, as well as the average and maximum number of iterations, which can give a general idea about the effectiveness of using neural networks to support the position estimation process. In all simulated scenarios, simple networks with a single hidden layer containing a dozen non-linear neurons turned out to be sufficient to solve the convergence problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.