Abstract

A second-order control volume finite element method combined with the multiscale flux approximation (CVFEM-MS) based on triangular elements is proposed to numerically investigate the self-heating effects of semiconductor devices. The multiscale fluxes are combined with a selected set of second-order vector basis functions to stabilize the discretization of carrier continuity equations with respect to triangular elements. Numerical results reveal that the proposed method is robust and accurate, even on the mesh of low-quality, where the detrimental impacts caused by the severe self-heating on the terminal currents can be obviously observed for a bipolar transistor model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.