Abstract

In this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using ℓ1 or ℓ2 norm; with each measure having its advantages and disadvantages. Recently, in [4] a regularization of the ℓ1-CTA using Pseudo-Huber function was introduced in an attempt to combine positive characteristics of both ℓ1-CTA and ℓ2-CTA. All three models can be solved using appropriate versions of Interior-Point Methods (IPM). It is known that IPM in general works better on well structured problems such as conic optimization problems, thus, reformulation of these CTA models as conic optimization problem may be advantageous. We present reformulation of Pseudo-Huber-CTA, and ℓ1-CTA as Second-Order Cone (SOC) optimization problems and test the validity of the approach on the small example of two-dimensional tabular data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.