Abstract
The dopamine transporter (DAT), located presynaptically on dopamine neurons, provides a marker for Parkinson's disease (Pd) and attention deficit hyperactivity disorder (ADHD). In ADHD, DAT density levels are elevated, while in Pd these levels are depleted. The depletion of DAT levels also corresponds with the loss of dopamine. We now describe the design, synthesis, biology, and SPECT imaging in nonhuman primates of second-generation (99m)technetium-based tropane ligands that bind potently and selectively to the DAT. We demonstrate that improved selectivity and biological stability allows sufficient agent to enter the brain and label the DAT in vivo to provide a quantitative measure of DAT density in nonhuman primates. We introduce FLUORATEC (N-[(2-((3'-N'-propyl-(1"R)-3"alpha-(4-fluorophenyl)tropane-2"beta-1-propanoyl)(2-mercaptoethyl)amino)acetyl)-2-aminoethanethiolato]technetium(V) oxide), a DAT imaging agent that has emerged from these studies and is now in phase 1 clinical trials in the U.S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.