Abstract
This study aims to investigate the elastic–plastic response of a clamped-clamped beam struck by a rigid heavy mass with a low velocity at any point on the span. The impact system is simplified as a single-degree-of-freedom (SDoF) mass-spring model to formulate the beam’s equations of motion during loading and unloading. With the consideration of material elasticity and large deflection, elastic–plastic analytical solutions are derived to predict the global deformation behavior of the beam. Validation and comparison are conducted against numerical simulations performed using ABAQUS, and satisfactory agreement is achieved for the predictions of the structural dynamic behavior. Meanwhile, a parametric study is presented to assess the influence of the impact location on the characteristic response parameters, which suggests that the structural stiffness increases as the impact location approaches the beam’s support. The findings drawn from analytical and numerical studies can be useful in the anti-impact design of engineering structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have