Abstract
Abstract We use a combination of experimental design, sketch-based reservoir modelling and flow diagnostics to rapidly screen the impact of sedimentological heterogeneities that constitute baffles and barriers on CO 2 migration in depleted hydrocarbon reservoirs and saline aquifers of the Sherwood Sandstone Group and Bunter Sandstone Formation, UK. These storage units consist of fluvial sandstones with subordinate aeolian sandstones, floodplain and sabkha heteroliths and lacustrine mudstones. The predominant control on effective horizontal permeability is the lateral continuity of aeolian-sandstone intervals. Effective vertical permeability is controlled by the lateral extent, thickness and abundance of lacustrine-mudstone layers and aeolian-sandstone layers, and the mean lateral extent and mean vertical spacing of carbonate-cemented basal channel lags in fluvial facies-association layers. The baffling effect on CO 2 migration and retention is approximated by the pore volume injected at breakthrough time, which is controlled largely by three heterogeneities, in order of decreasing impact: (1) the lateral continuity of aeolian-sandstone intervals; (2) the lateral extent of lacustrine-mudstone layers; and (3) the thickness and abundance of fluvial-sandstone, aeolian-sandstone, floodplain-and-sabkha-heterolith and lacustrine-mudstone layers. Future effort should be focused on characterizing these three heterogeneities as a precursor for later capillary, dissolution and mineral trapping.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have