Abstract

AbstractBecause distributed manufacturing technology is the foundation of modernized production and traditional heuristic methods exhibit problems of high complexity and low efficiency, this paper designs a scheduling algorithm based on the singular value decomposition heuristic (SVDH) method. The algorithm uses the device distribution and the transportation relationship between devices in a distributed manufacturing system. The algorithm takes the sequence relationship between tasks and the distance between devices as the implicit relationship between the task and the device. The algorithm makes use of the implicit relationship to amend the processing time matrix of the task and corrects the processing time matrix that contains the transportation relationship. Singular value decomposition principal component analysis is performed on the corrected processing time to find the most suitable processing device for each process, and an initial solution matrix is established. The heuristic solution is used to optimize the initial solution to find the optimal scheduling result based on the initial solution matrix. The establishment of the initial solution can effectively reduce the computational complexity of the heuristic solution, realize a parallelizing solution, and improve the efficiency of the heuristic solutions. In addition, the SVDH scheduling result has a lower transfer time between devices due to the consideration of the topology of tasks and devices, that is, the transit time. In this paper, the experiments are conducted on the heuristic performance, scheduling results, and transportation time. The experimental results show the advantages of SVDH over general heuristic algorithms in terms of efficiency and transit time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call