Abstract
We perform a systematic search for N=1 Minkowski vacua of type II string theories on compact six-dimensional parallelizable nil- and solvmanifolds (quotients of six-dimensional nilpotent and solvable groups, respectively). Some of these manifolds have appeared in the construction of string backgrounds and are typically called twisted tori. We look for vacua directly in ten dimensions, using the a reformulation of the supersymmetry condition in the framework of generalized complex geometry. Certain algebraic criteria to establish compactness of the manifolds involved are also needed. Although the conditions for preserved N=1 supersymmetry fit nicely in the framework of generalized complex geometry, they are notoriously hard to solve when coupled to the Bianchi identities. We find solutions in a large-volume, constant-dilaton limit. Among these, we identify those that are T-dual to backgrounds of IIB on a conformal T^6 with self-dual three-form flux, and hence conceptually not new. For all backgrounds of this type fully localized solutions can be obtained. The other new solutions need multiple intersecting sources (either orientifold planes or combinations of O-planes and D-branes) to satisfy the Bianchi identities; the full list of such new solution is given. These are so far only smeared solutions, and their localization is yet unknown. Although valid in a large-volume limit, they are the first examples of Minkowski vacua in supergravity which are not connected by any duality to a Calabi-Yau. Finally, we discuss a class of flat solvmanifolds that may lead to AdS_4 vacua of type IIA strings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.