Abstract

BackgroundIdentifying differentially expressed genes between the same or different species is an urgent demand for biological and medical research. For RNA-seq data, systematic technical effects and different sequencing depths are usually encountered when conducting experiments. Normalization is regarded as an essential step in the discovery of biologically important changes in expression. The present methods usually involve normalization of the data with a scaling factor, followed by detection of significant genes. However, more than one scaling factor may exist because of the complexity of real data. Consequently, methods that normalize data by a single scaling factor may deliver suboptimal performance or may not even work.The development of modern machine learning techniques has provided a new perspective regarding discrimination between differentially expressed (DE) and non-DE genes. However, in reality, the non-DE genes comprise only a small set and may contain housekeeping genes (in same species) or conserved orthologous genes (in different species). Therefore, the process of detecting DE genes can be formulated as a one-class classification problem, where only non-DE genes are observed, while DE genes are completely absent from the training data.ResultsIn this study, we transform the problem to an outlier detection problem by treating DE genes as outliers, and we propose a scaling-free minimum enclosing ball (SFMEB) method to construct a smallest possible ball to contain the known non-DE genes in a feature space. The genes outside the minimum enclosing ball can then be naturally considered to be DE genes. Compared with the existing methods, the proposed SFMEB method does not require data normalization, which is particularly attractive when the RNA-seq data include more than one scaling factor. Furthermore, the SFMEB method could be easily extended to different species without normalization.ConclusionsSimulation studies demonstrate that the SFMEB method works well in a wide range of settings, especially when the data are heterogeneous or biological replicates. Analysis of the real data also supports the conclusion that the SFMEB method outperforms other existing competitors. The R package of the proposed method is available at https://bioconductor.org/packages/MEB.

Highlights

  • Identifying differentially expressed genes between the same or different species is an urgent demand for biological and medical research

  • All the R scripts that analysed the data have been uploaded at github, which could be accessible at https://github.com/ FocusPaka/NIMEB

  • Simulation studies We evaluate the performance of the proposed method by conducting simulations in a variety of scenarios and comparing the results with those obtained with five existing methods using the criteria of receiver operating characteristic (ROC) curve and area under the curve (AUC)

Read more

Summary

Introduction

Identifying differentially expressed genes between the same or different species is an urgent demand for biological and medical research. The present methods usually involve normalization of the data with a scaling factor, followed by detection of significant genes. Using RNA-seq data for the detection of differential gene expression under different biological conditions or in different species remains a challenge for practitioners. Brawand et al [10] proposed a method based on reads per kilobase of transcript per million mapped reads (RPKM) [11] to employ 1000 of the most conserved genes to obtain the median expression level, and they regarded the ratio of the median values as a scaling factor. Zhou et al [12] considered different structures between the same and different species, and proposed a scale-based normalization (SCBN) method that utilizes a part of the known conserved genes and the hypothesis testing framework

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.