Abstract
The calculation of high-frequency wave radiation in exterior domains by finite element methods can lead to large computations. In this paper, it is shown that the solution in the exterior domain can be decomposed as a series expansion of functions with an analytical part made from the product of harmonic waves and polynomials in a scaled variable and a numerical part made of a finite element approximation vector. The solution of the radiation or scattering problem can be found by solving a sparse linear system which is set from the dynamic stiffness matrices of several scaled layers around the radiating body. These dynamic stiffness matrices are classical finite element matrices obtained from any finite element software. Moreover, accurate results can be obtained from a small number of terms in the series expansion. Several examples are given to estimate the efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.