Abstract

Two key hurdles to the adoption of Machine Learning (ML) techniques in hyperspectral data compression are computational complexity and scalability for large numbers of bands. These are due to the limited computing capacity available in remote sensing platforms and the high computational cost of compression algorithms for hyperspectral data, especially when the number of bands is large. To address these issues, a channel clusterisation strategy is proposed, which reduces the computational demands of learned compression methods for real scenarios and is scalable for different sources of data with varying numbers of bands. The proposed method is compatible with an embedded implementation for state-of-the-art on board hardware, a first for a ML hyperspectral data compression method. In terms of coding performance, our proposal surpasses established lossy methods such as JPEG 2000 preceded by a spectral Karhunen-Loève Transform (KLT), in clusters of 3 to 7 bands, achieving a PSNR improvement of, on average, 9 dB for AVIRIS and 3 dB for Hyperion images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.