Abstract

A suite of scalable molecular-dynamics (MD) algorithms has been developed for materials simulations. The linear scaling MD algorithms encompass a wide spectrum of physical reality: (i) classical MD based on a many-body interatomic potential model; (ii) environment-dependent, variable-charge MD; (iii) quantum mechanical MD based on the tight-binding method; and (iv) self-consistent quantum MD based on the density functional theory. Benchmark tests on 1024 Cray T3E processors including 1.02-billion-atom many-body and 22 500-atom density functional MD simulations demonstrate that these algorithms are highly scalable. A design-space diagram spanning seven decades of system size and computational time is constructed for materials scientists to design an optimal MD simulation incorporating maximal physical realism within a given computational budget.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.