Abstract

Abstract We examine the scalable implementation of the lattice Boltzmann method (LBM) in the context of interface-resolved simulation of wall-bounded particle-laden flows. Three distinct aspects relevant to performance optimization of our lattice Boltzmann simulation are studied. First, we optimize the core sub-steps of LBM, the collision and the propagation (or streaming) sub-steps, by reviewing and implementing five different published algorithms to reduce memory loading and storing requirements to boost performance. For each, two different array storage formats are benchmarked to test effective cache utilization. Second, the vectorization of the multiple-relaxation-time collision model is discussed and our vectorized collision and propagation algorithm is presented. We find that careful use of Intel’s Advance Vector Extensions and appropriate array storage formats can significantly enhance performance. Third, in the presence of many finite-size, moving solid particles within the flow field, three different communication schemes are proposed and compared in order to optimize the treatment of fluid-solid interactions. These efforts together lead to a very efficient LBM simulation code for interface-resolved simulation of particle-laden flows. Overall, the optimized scalable code of particle-laden flow is a factor of 4.0-to-8.5 times faster than our previous implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.