Abstract

This study was undertaken to explore the synergistic effect of scaffold materials and a cartilage-like environment on the chondrogenic differentiation of stem cells. Because stem cells encapsulated in a cartilage scaffold will be induced by scaffold molecules as well as permeable molecules from the surroundings, it is impossible to optimize a chondro-inducible scaffold without considering environmental sensitivity. How do we know if a designed scaffold will be sufficient prior to implantation? In this study, bone marrow mesenchymal stem cells (bMSCs) were seeded in various scaffolds, including collagen hydrogel, collage/sodium alginate hydrogel, collagen sponge and silk fibroin sponge. The cell-scaffold complex was encapsulated in a filter pocket to avoid direct contact with co-cultured chondrocytes. Scaffolds differed in the ability to adsorb inducible molecules expressed by chondrocytes, as evidenced by various expressions of cartilage specific proteins and genes. Collagen hydrogel unexpectedly supported chondrogenic differentiation in an environment filled with chondrocytes secretion better than other reinforced scaffolds, which is consistent with the previous experiment in vivo. This result indicated that the environmental sensitivity of a scaffold is important for in vivo chondro-induction. This in vitro scaffold-filter model may be useful as a precursor to investigate the chondro-inducing potential of various scaffolds for cartilage repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.