Abstract

Polymer flooding is an effective method widely applied for enhancing oil recovery (EOR) by reducing the mobility ratio between the injected water and crude oil. However, traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity. To overcome this challenge, we synthesized a zwitterion polymer (PAMNS) with salt-induced tackifying property through copolymerization of acrylamide and a zwitterion monomer, methylacrylamide propyl-N, N-dimethylbutylsulfonate (NS). NS monomer is obtained from the reaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide. In this study, the rheological properties, salt responsiveness, and EOR efficiency of PAMNS were evaluated. Results demonstrate that PAMNS exhibits desirable salt-induced tackifying characteristics, with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30 × 104 mg L−1. Furthermore, high valence ions possess a much stronger effect on enhancing viscosity, manifested as Mg2+ > Ca2+ > Na+. Molecular dynamics simulations (MD) and fluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecular associations in high-salinity environments. It is because of the salt-induced tackifying, PAMNS demonstrates superior performance in polymer flooding experiments under salinity ranges from 5 × 104 mg L−1 to 20 × 104 mg L−1, leading to 10.38–19.83 % higher EOR than traditional polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call