Abstract

Accurate classification of cassava disease, particularly in field scenarios, relies on object semantic localization to identify and precisely locate specific objects within an image based on their semantic meaning, thereby enabling targeted classification while suppressing irrelevant noise and focusing on key semantic features. The advancement of deep convolutional neural networks (CNNs) paved the way for identifying cassava diseases by leveraging salient semantic features and promising high returns. This study proposes an approach that incorporates three innovative elements to refine feature representation for cassava disease classification. First, a mutualattention method is introduced to highlight semantic features and suppress irrelevant background features in the feature maps. Second, instance batch normalization (IBN) was employed after the residual unit to construct salient semantic features using the mutualattention method, representing high-quality semantic features in the foreground. Finally, the RSigELUD activation method replaced the conventional ReLU activation, enhancing the nonlinear mapping capacity of the proposed neural network and further improving fine-grained leaf disease classification performance. This approach significantly aided in distinguishing subtle disease manifestations in cassava leaves. The proposed neural network, MAIRNet-101 (Mutualattention IBN RSigELUD Neural Network), achieved an accuracy of 95.30 % and an F1-score of 0.9531, outperforming EfficientNet-B5 and RepVGG-B3g4. To evaluate the generalization capability of MAIRNet, the FGVC-Aircraft dataset was used to train MAIRNet-50, which achieved an accuracy of 83.64 %. These results suggest that the proposed algorithm is well suited for cassava leaf disease classification applications and offers a robust solution for advancing agricultural technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.