Abstract

Rydberg atoms have been shown to be very useful in performing absolute measurements of the magnitude of a radio frequency (RF) field using electromagnetically induced transparency. However, there has been less success in using Rydberg atoms for the measurement of the phase of an RF field. Measuring the phase of a RF field is a necessary component for many important applications, including antenna metrology, communications, and radar. We demonstrate a scheme for measuring the phase of an RF field by using Rydberg atoms as a mixer to down-convert an RF field at 20 GHz to an intermediate frequency on the order of kHz. The phase of the intermediate frequency corresponds directly to the phase of the RF field. We use this approach to measure the phase shift on an electromagnetic wave from a horn antenna as the antenna is placed at different distances from the Rydberg atom sensor. The atom-based RF phase measurements allow us to measure the propagation constant of the RF wave to within 0.1% of the theoretical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.