Abstract

The paper deals with the numerical treatment of stochastic differential-algebraic equations of index one with a scalar driving Wiener process. Therefore, a particularly customized stochastic Runge-Kutta method is introduced. Order conditions for convergence with order 1.0 in the mean-square sense are calculated and coefficients for some schemes are presented. The proposed schemes are stiffly accurate and applicable to nonlinear stochastic differential-algebraic equations. As an advantage they do not require the calculation of any pseudo-inverses or projectors. Further, the mean-square stability of the proposed schemes is analyzed and simulation results are presented bringing out their good performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call