Abstract

In this paper, we study the convergence and stability of the stochastic theta method (STM) for a class of index 1 stochastic delay differential algebraic equations. First, in the case of constrained mesh, i.e., the stepsize is a submultiple of the delay, it is proved that the method is strongly consistent and convergent with order 1/2 in the mean-square sense. Then, the result is further extended to the case of non-constrained mesh where we employ linear interpolation to approximate the delay argument. Later, under a sufficient condition for mean-square stability of the analytical solution, it is proved that, when the stepsizes are sufficiently small, the STM approximations reproduce the stability of the analytical solution. Finally, some numerical experiments are presented to illustrate the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.