Abstract
Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have