Abstract
Abstract In complex environments, signals from rotor bearing systems can easily be drowned out by strong noise, leading to low fault diagnosis accuracy. In order to reduce noise and improve diagnostic accuracy, this paper proposes a rotor bearing system fault diagnosis method based on FSASCA-VMD (Future Search Algorithm based on Sine Cosine Algorithm-Variational Mode Decomposition) and GraphSAGE-SA (Graph SAmple and aggreGatE-Self Attention). First, the FSASCA optimization algorithm is used to determine two parameters in VMD. The best combination found is then input into VMD to decompose the original signal. Then, filter the IMF (Intrinsic Mode Function) components with high correlation to the original signal using cumulative percentage kurtosis. Reconstruct the filtered IMF components to complete signal denoising. Finally, this paper utilizes graph theory and time series correlation to uncover the hidden relationships within the data. Utilizing the Euclidean distance as the edge weight between nodes, a graph model is established based on the topological structure of the PathGraph, and a GraphSAGE-SA fault diagnosis framework is constructed. Utilizing a self-attention mechanism to aggregate nodes enhances the weight allocation of important information. The experimental results indicate that the method proposed in this paper can effectively remove most of the noise in the signal while preserving a significant amount of useful information. In rotor bearing system fault diagnosis, the diagnostic accuracies of this method for simulated and laboratory signals are 98.33% and 98.56%, respectively, surpassing those of other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.