Abstract

It is shown that the equilibrium shape of an incompressible dielectric fluid drop rotating with constant angular velocity in the presence of a uniform external electric field of appropriate magnitude along the axis of rotation is spherical. For an inviscid fluid drop, the stability of this spherical configuration to small deformations is investigated by means of Chandrasekhar's virial method. We find that a rotating drop in the presence of an electric field parallel to the axis of rotation is, in some respects, more stable than when either only the electric field or only rotation is present. This is due to the fact that the application of an electric field parallel to the axis of a rotating drop, or of rotation parallel to an electric field in which a drop is immersed, shifts the instability mechanism to another normal mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.