Abstract
In order to determine the magnitude and the position of the plasma current in a long pulsed tokamak such as the International Thermonuclear Experimental Reactor (ITER), it is urged to establish a reliable method which is free from the zero-level drift of the integrator as well as the radiation damage for the steady-state magnetic field measurement. For this purpose, we have developed a hybrid system, a combination of a conventional magnetic probe for the measurement of fast varying magnetic field and a rotating coil magnetic probe for that of slowly varying field. The rotating coil is energized by an air turbine to avoid electromagnetic interference and the induce signal with a constant rotation frequency is picked up through a transformer to eliminate mechanical contacts. An automatic gain control circuit is also designed for the compensation of rotation speed fluctuation. The system is proved to achieve a flat frequency response with a proper choice of cross over frequency for high- and low-frequency systems. The rotating coil probe is tested for over 170 h without any trouble. The probe was applied to the poloidal magnetic field measurement on the TRIAM-1M long pulsed tokamak, and proved to work satisfactorily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.