Abstract

This study proposes a design methodology for a novel rotary flexural bearing that is based on the motion principles of elastic flexures. The bearing is capable of providing rotational oscillations of one complete revolution and is characterized by potentially high repeatability, smooth motions, no mechanical wear and no lubrication requirements, no gaps or interfaces, zero maintenance, in addition to its compactness. From the structural characteristics and the basic working principles of the flexural bearings, the study provides a design analysis on the various aspects of the bearing, including material selection, stress analysis and calculations (such as nonlinear finite element analysis, static and fatigue strength designs), motion error analysis and error reduction strategy, parametric design, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call