Abstract

The present study investigated the role of the transcription factor, glial cell missing 2 (gcm2), in Ca(2+) regulation in zebrafish larvae. Translational gene knockdown of gcm2 decreased Ca(2+) uptake and the density of ionocytes expressing the epithelial Ca(2+) channel (ecac), and disrupted the overall Ca(2+) balance. Ca(2+) uptake and the expression of gcm2 messenger RNA (mRNA) were significantly elevated in larvae acclimated to low Ca(2+) water (25 μM); the stimulation of Ca(2+) uptake was not observed in fish experiencing gcm2 knockdown. Acclimation to acidic water (pH 4) significantly reduced whole-body Ca(2+) content owing to reduced Ca(2+) uptake and increased Ca(2+) efflux. However, ecac mRNA levels and the density of ecac-expressing ionocytes were increased in fish acclimated to acidic water, and maximal Ca(2+) uptake capacity (J MAX) was significantly increased when measured in control water (pH ~7.4). Acclimation of larvae to acidic water significantly increased gcm2 mRNA expression, and in gcm2 morphants, no such stimulation in Ca(2+) uptake was observed after their return to control water. Overexpression of gcm2 mRNA resulted in a significant increase in the numbers of ecac-expressing ionocytes and Ca(2+) uptake. These observations reveal a critical role for gcm2 in Ca(2+) homeostasis in zebrafish larvae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.