Abstract

The endocannabinoid system (SEC) is an important modulator of several metabolic functions. This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome. Liver steatosis of different origins constitutes a physiopathological condition where an altered hepatic SEC is observed. In this condition, there is an increased expression of RCB1 and/or higher endocannabinoid levels in different hepatic cells, which may exert an autocrine/paracrine hyperstimulation of RCB1/RCB2. Activation of RCB1 stimulate the expression of several hepatocyte lipogenic factors, thus leading to increased de novo fatty acids synthesis and consequently to an abnormal accumulation of triglycerides. The effect of RCB2 activity on hepatic function is still controversial because, on one side its stimulation has an interesting protective effect on alcoholic liver disease while, on the other, it may enhance the development of hepatic steatosis in experimental models of diet-induced obesity. In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.