Abstract
Internodal shoot sections of the easy-to-root Forsythia×intermedia cv. Lynwood, and the difficult-to-root Syringa vulgaris cv. Madame Lemoine were used in vitro to investigate the role of polar auxin transport (PAT) in rhizogenesis. Syringa internodes required the distal application of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or naphthaleneacetic acid to induce rooting, while 2,4-dichlorophenoxyacetic acid was ineffective. In contrast, Forsythia internodes rooted equally well when IBA was applied at either end of the internode. Using [3H]IAA showed transport of exogenous auxin was basipetal, and that despite similar transport velocities, the intensity of auxin transport in Syringa was greater than in Forsythia. Basipetal transport of exogenous auxin was blocked using the PAT inhibitors 2,3,5-triiodobenzoic acid (TIBA) and naringenin (Nar); where Forsythia proved more sensitive to TIBA, but less so to Nar, in comparison with Syringa. In both species, percentage rooting and the number of roots formed were greater in 5-mm-long internodes than in shorter internodes. The results demonstrate the importance of PAT for root initiation in Syringa, whereas Forsythia tissue appears to be more sensitive to the direct application of auxin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have