Abstract

Coarse spaces are instrumental in obtaining scalability for domain decomposition methods. However, it is known that most popular choices of coarse spaces perform rather weakly in presence of heterogeneities in the coefficients in the partial differential equations, especially for systems. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems which isolate the terms responsible for slow convergence. We give a general theoretical result and then some numerical examples on a heterogeneous elasticity problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.