Abstract

A silicon micro-machined thermal gas flow sensor operating in anemometric mode has been designed, fabricated and investigated for continuous and pulsatile flows. The sensor is specifically designed to achieve high sensitivity, fast response time and high robustness. It is composed of four metallic resistors interconnected to form a Wheatstone bridge. Two of them act simultaneously as the heating and sensing elements and the two others are used as a temperature reference. The heating element consists of a metallic wire of platinum Pt (2 µm width, 2 mm length) maintained on each lateral side by periodic silicon oxide SiO2 micro-bridges. Finite element simulations show that this structure achieves a fast thermal response time of 200 µs in constant current operating mode and a coefficient of temperature rise close to 25 °C/120 µW based on bulk electrical resistivity and when the Pt wire and SiO2 thicknesses are close to 100 nm and 500 nm, respectively. This design allows the fabrication of a robust thermal flow sensor with heating elements as long as possible, which enables accurate measurements with high signal to noise ratio. The sensor is then characterised experimentally; its electrical and thermal properties are obtained in the absence of fluid flow. These results confirm the effectiveness of the thermal insulation as predicted by the simulations. In a second step, the fluidic characterizations are reported and discussed for both continuous and pulsatile flows. In continuous mode, the sensor response was studied for gas flow rate ranging from 0 L min−1 to 10 L min−1. In pulsatile mode, the sensor is integrated inside a channel of a micro-valve actuated at 200 Hz. The measurements are compared with those obtained by a classical commercial hot wire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call