Abstract

An RF MEMS variable capacitor using hybrid actuation of piezoelectric and electrostatic forces is presented. A surface micromachining process is used to fabricate the device. The piezoelectric actuator, which uses thin film PZT, enables low voltage actuation while the electrostatic actuator realizes large capacitance ratio. The measured capacitance ratio is Cmax/Cmin=14 at 5V. We demonstrate that the hybrid actuation enables to lower the pull-in voltage without changing the pull-out voltage. We also show that the shift of pull-out voltage due to dielectric charging can be reduced drastically at actuation voltages below 10V. In this sense, the hybrid actuation can realize low voltage operation with enhanced robustness for stiction

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.