Abstract

This paper presents an efficient and robust circuital implementation of a rail-to-rail input stage with transconductance control, tailored for low-noise operational amplifiers based on differential pairs biased in the sub-threshold region. The proposed g m -control circuit design is indeed based on transistors ratio only, and allows efficient control with scaled currents and dimensions. The architecture guarantees nearly constant performance in terms of bandwidth and power consumption over the whole common mode input range in a power- and area-efficient way. The achievable precision of the transconductance control is also analyzed with transistor equations and its deviation predicted with a simple analytical model, which suggests also a strategy for the minimization of the error by proper tuning. A prototype of the input---output rail-to-rail operational amplifier has been fabricated in a standard 0.35 μm CMOS technology, confirming the validity of the g m -control loop. The amplifier consumes 597 μA from a 3.3 V supply, with an open-loop gain of 107 dB and a gain-bandwidth product of 42.6 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.