Abstract
AbstractPartial least squares (PLS) regression is a linear regression technique developed to relate many regressors to one or several response variables. Robust methods are introduced to reduce or remove the effect of outlying data points. In this paper, we show that if the sample covariance matrix is properly robustified further robustification of the linear regression steps of the PLS algorithm becomes unnecessary. The robust estimate of the covariance matrix is computed by searching for outliers in univariate projections of the data on a combination of random directions (Stahel—Donoho) and specific directions obtained by maximizing and minimizing the kurtosis coefficient of the projected data, as proposed by Peña and Prieto [1]. It is shown that this procedure is fast to apply and provides better results than other methods proposed in the literature. Its performance is illustrated by Monte Carlo and by an example, where the algorithm is able to show features of the data which were undetected by previous methods. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.