Abstract
In this study, we propose a computationally-light and robust neural network for estimating heart rate in remote healthcare systems. We develop a model that can be trained on consumer-grade graphics processing units (GPUs), and can be deployed on edge devices for swift inference. We propose a hybrid model based on convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) architectures for estimating heart rate from Electrocardiogram (ECG) and Photoplethysmography (PPG) signals. Considering the sensitive nature of the ECG signals, we ensure a formal privacy guarantee, differential privacy, for the model training. We perform a tight accounting of the overall privacy budget of our training algorithm using the Rényi Differential Privacy technique. We demonstrate that our model outperforms state-of-the-art networks on a benchmark dataset for both ECG and PPG signals despite having a much smaller number of trainable parameters and, consequently, much smaller training and inference times. Our CNN-BiLSTM architecture can also provide excellent heart rate estimation performance even under strict privacy constraints. We develop a prototype Arduino-based data collection system that is low-cost, efficient, and useful for providing access to modern healthcare services to people living in remote areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.