Abstract

We present an end-to-end deep learning model that can automatically detect epileptic seizures in multichannel electroencephalography (EEG) recordings. Our model combines a Convolutional Neural Network (CNN) and a Bidirectional Long Short-Term Memory (BLSTM) network to efficiently mine information from the EEG data using a small number of trainable parameters. Specifically, the CNN learns a latent encoding for each one second window of raw multichannel EEG data. In conjunction, the BLSTM learns the temporal evolution of seizure presentations given the CNN encodings. The combination of these architectures allows our model to capture both the short time scale EEG features indicative of seizure activity as well as the long term correlations in seizure presentations. Unlike most prior work in seizure detection, we mimic an in-patient monitoring setting through a leave-one-patient-out cross validation procedure, attaining an average seizure detection sensitivity of 0.91 across all patients. This strategy verifies that our model can generalize to new patients. We demonstrate that our CNN–BLSTM outperforms both conventional feature extraction methods and state-of-the-art deep learning approaches that rely on larger and more complex network architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.