Abstract
In this work a robust nonlinear model predictive controller for nonlinear convection–diffusion-reaction systems is presented. The controller makes use of a collection of reduced order approximations of the plant (models) reconstructed on-line by projection methods on proper orthogonal decomposition (POD) basis functions. The model selection and model update step is based on a sufficient condition that determines the maximum allowable process-model mismatch to guarantee stable control performance despite process uncertainty and disturbances. Proofs on the existence of a sequence of feasible approximations and control stability are given. Since plant approximations are built on-line based on actual measurements, the proposed controller can be interpreted as a multi-model nonlinear predictive control (MMPC). The performance of the MMPC strategy is illustrated by simulation experiments on a problem that involves reactant concentration control of a tubular reactor with recycle.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have