Abstract

A molecular porous material, MPM-2, comprised of cationic [Ni2 (AlF6 )(pzH)8 (H2 O)2 ] and anionic [Ni2 Al2 F11 (pzH)8 (H2 O)2 ] complexes that generate a charge-assisted hydrogen-bonded network with pcu topology is reported. The packing in MPM-2 is sustained by multiple interionic hydrogen bonding interactions that afford ultramicroporous channels between dense layers of anionic units. MPM-2 is found to exhibit excellent stability in water (>1year). Unlike most hydrogen-bonded organic frameworks which typically show poor stability in organic solvents, MPM-2 exhibited excellent stability with respect to various organic solvents for at least two days. MPM-2 is found to be permanently porous with gas sorption isotherms at 298K revealing a strong affinity for C2 H2 over CO2 thanks to a high (ΔQst )AC [Qst (C2 H2 ) - Qst (CO2 )] of 13.7kJ mol-1 at low coverage. Dynamic column breakthrough experiments on MPM-2 demonstrated the separation of C2 H2 from a 1:1 C2 H2 /CO2 mixture at 298 K with effluent CO2 purity of 99.995% and C2 H2 purity of >95% after temperature-programmed desorption. C-H···F interactions between C2 H2 molecules and F atoms of AlF6 3- are found to enable high selectivity toward C2 H2 , as determined by density functional theory simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call