Abstract

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy in tandem with chemometrics was used for accurate quantification of total eugenol, eugenyl acetate, and β-caryophyllene compounds of clove oil (CO) using partial least squares (PLS) regression with various spectral derivatization methods. A set of six of the fifty-one CO samples was chosen to build up the calibration sets for the compounds, while the rest were selected as the prediction set. Data for total eugenol, eugenyl acetate, and β-caryophyllene was acquired by gas chromatography-mass spectrometry (GC-MS) and used as reference values for ATR-FTIR calibration. The best calibration results were achieved using raw spectra in the region 1560-1480, 1814-1700, and 2954-2780 cm−1 for total eugenol, eugenyl acetate, and β-caryophyllene with high regression coefficients (R-square) of 0.9999, 0.9966, and 0.9997, respectively and low root mean square error of prediction (RMSEP) values of 0.5054%, 0.2330%, and 0.4593%, respectively. The results of the study indicated that ATR-FTIR with PLS regression could be used for accurate and simultaneous quantification of total eugenol, eugenyl acetate, and β-caryophyllene compounds of COs without using any toxic chemicals or pretreatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call