Abstract

The purpose of this article is to investigate a practical scheduling problem in which a group of elective surgical cases are scheduled over time, while considering their unpredictable durations and potential delays in the sterilisation of surgical instruments. The primary objectives were to schedule the maximum number of surgeries and decrease overtime for the surgical staff, as well as limit the number of instruments requiring emergency sterilisation. The study was conducted in collaboration with the University Hospital of Angers in France, which also contributed historical data for the experiments. We propose two robust mixed integer linear programming models, which are then solved iteratively through a rolling horizon approach, in which the objective functions are taken into account in lexicographic order. Experiments on randomly generated instances indicated which of the two approaches had better performance. Comparison of the results for a real-world scenario involving actual planning at the hospital indicated a greater than 69% decrease in overtime, and a minimum of 92% fewer stressful situations in the sterilising unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.