Abstract

<abstract><p>We consider a time semidiscretization of the Ginzburg-Landau equation by the backward Euler scheme. For each time step $ \tau $, we build an exponential attractor of the dynamical system associated to the scheme. We prove that, as $ \tau $ tends to $ 0 $, this attractor converges for the symmetric Hausdorff distance to an exponential attractor of the dynamical system associated to the Allen-Cahn equation. We also prove that the fractal dimension of the exponential attractor and of the global attractor is bounded by a constant independent of $ \tau $.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.