Abstract
A robust estimate of the correlation coefficient for a bivariate normal distribution using balanced ranked set sampling is studied. We show that this estimate is at least as efficient as the corresponding estimate based on simple random sampling and highly efficient compared to the maximum likelihood estimate using balanced ranked set sampling. The estimate is robust to common ranking errors. Small sample performance of the estimate is studied by simulation under imperfect and perfect ranking. A variance stabilizing transformation for the confidence interval of the correlation coefficient is obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have