Abstract

In this paper, we investigate the effects of spin-dependent electron and defect in the carbon-based molecular device. Our proposed molecular device is designed by two carbon chains, which is bonded to a defect. The defect topology includes pentagonal and octagonal carbon rings, which is put between two zigzag-edged graphene nanoribbon (ZGNR). The spin effect and switching symbiosis are shown in this carbon-based device. By switching of the orientation of the defect in two states (S1/S2 states) relative to the two electrodes, the full spin effect is shown. Also, we report the obvious negative differential resistance (NDR) behavior in our proposed molecular device. The results suggest that the proposed composition significantly affects the ratio of current and voltage, which the maximum peak of current (S2 state) is lower than 0.0022μA and could have a potential application in the next generation of molecular circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call