Abstract

We present ab initio calculations for spin-dependent electron transport in a molecular device constructed by two carbon chains capped with a phenyl ring, which is sandwiched between two zig-zag-edged graphene nanoribbon (ZGNR) electrodes, where the ZGNRs are modulated by external magnetic field. The coexistence of switching, dual spin-filtering effects, and negative differential resistance (NDR) in the model device is demonstrated with the theory of carbon π-electrons. Interestingly, a two-state molecular conformational switch can be realized by changing the orientation between the planes of phenyl ring and electrodes, where the majority-spin current modulation (ON/OFF ratio) is 170–479 within the considered bias window. Moreover, the device shows perfect dual spin-filtering effect and can generate and control a full dual spin-polarized current through either the source-drain voltage or magnetic configuration of the electrodes. The selective spin current is due to a dual selection rule, the symmetry match...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call