Abstract

Input and output data, under uncertainty, must be taken into account as an essential part of data envelopment analysis (DEA) models in practice. Many researchers have dealt with this kind of problem using fuzzy approaches, DEA models with interval data or probabilistic models. This paper presents an approach to scenario-based robust optimization for conventional DEA models. To consider the uncertainty in DEA models, different scenarios are formulated with a specified probability for input and output data instead of using point estimates. The robust DEA model proposed is aimed at ranking decision-making units (DMUs) based on their sensitivity analysis within the given set of scenarios, considering both feasibility and optimality factors in the objective function. The model is based on the technique proposed by Mulvey et al. (1995) for solving stochastic optimization problems. The effect of DMUs on the product possibility set is calculated using the Monte Carlo method in order to extract weights for feasibility and optimality factors in the goal programming model. The approach proposed is illustrated and verified by a case study of an engineering company.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.