Abstract

Due to limited financial resources and high costs of infrastructure projects, project stakeholders seek to gain maximum profits with optimal resource utilization as well as cost and time minimization. Therefore, this study presents a multi-mode resource-constrained project scheduling model considering the uncertain parameters of cost and time together with the goals of maximizing the net present value and minimizing resource usage fluctuation. Also, the assumptions related to the real-world projects regarding multi-mode activities, limitation of renewable resources, and the deadline of project are incorporated into the proposed model. Moreover, a robust scheduling method is presented to better deal with the inherent uncertainties of projects regarding cost and time. The model is solved with the exact method named lexicographic goal programming (LGP). Due to the NP-hardness of the problem, two metaheuristic algorithms named Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO) are applied to solve various medium and large size problems. The obtained results indicate the high efficiency of the two metaheuristic algorithms in solving the problem and the better performance of the MOPSO algorithm compared with NSGA-II in terms of five indices. Furthermore, the model is implemented in an offshore equipment installation phase of a wellhead platform project. Finally, the sensitivity analysis of the proposed robust model is performed considering different conservation levels, and the results are evaluated by Monte Carlo simulation with three normal, uniform and triangular distributions. The findings demonstrate that the robustness of the model against the variations of uncertain parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.