Abstract
Contractor selection is a matter of particular attraction for project managers whose aim is to complete projects considering time, cost and quality issues. Traditionally, project scheduling and contractor selection decisions are made separately and sequentially. However, it is usually necessary to satisfy some principles and obligations that impose hard constraints to the problem under consideration. Ignoring this important issue and making project scheduling and contractor selection decisions consecutively may be suboptimal to a holistic view that makes all interrelated decisions in an integrated manner. In this paper, an integrated bi-objective optimization model is proposed to deal with Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP) and Contractor Selection (CS) problem, simultaneously. The objective of the proposed model is to minimize the total costs of the project, and minimize the makespan of the project, simultaneously. To solve the integrated MRCPSP-CS, two multi-objective meta-heuristic algorithms, Non-Dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Particle Swarm Optimization algorithm (MOPSO), are adopted, and 30 test problems of different sizes are solved. The parameter tuning is performed using the Taguchi method. Then, diversification metric (DM), mean ideal distance (MID), quality metric (QM) and number of Pareto solutions (NPS) are used to quantify the performance of meta-heuristic algorithms. Analytic Hierarchy Process (AHP), as a prominent multi-attribute decision-making method, is used to determine the relative importance of performance metrics. Computational results show the superior performance of MOPSO compared to NSGA-II for small-, medium- and large-sized test problems. Moreover, a sensitivity analysis shows that by increasing the number of available contractors, not only the makespan of the project is shortened, but also, the value of NPS in the Pareto front increases, which means that the decision maker(s) can make a wider variety of decisions in a more flexible manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.