Abstract
Most of disk drives suffer from various disturbances that degrade read–write performances. As the track density rapidly increases, basic drive functions may fail even with a small scale disturbance in a normal operating environment. For the reason, an accurate identification of the repeatable runout (RRO) of a hard disk drive has been one of the most important tasks for the successful servo designs in modern hard disk drive integration. Extensive research efforts have been dedicated for the compensation of the runouts and produced many successful strategies to minimize the influences to the critical basic drive functions. Primarily for the simple implementation and the cost reduction in the actual drive development and manufacturing, most of the developed methods being used in the actual drive integration are preferred to be formulated on time domain or frequency domain with very basic limited functions. The primitive frequency domain approaches usually require extensive calculations and large physical memories. In the present work, a RRO compensation method that combines advantages of the transient Fourier coefficients (TFC) and the least mean square (LMS) update is introduced. Combining the two methods in a proper fashion, the present work provides many benefits for the drive design and outperforms the previous compensation methods. The proposed method requires significantly less amount of computational work and physical memories compared to the conventional runout compensation methods. And it also provides effective frequency component selectivity so that the compensation resources are to be concentrated to a specific problem reason. Comprehensive frequency domain formulation of the method followed by a series of experimental test results is provided in the present article.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have