Abstract

Increasing demand for high-speed inter-chip interconnects requires faster links that consume less power. Channel coding can be used to lower the required signal-to-noise ratio for a specific bit error rate in a channel. There are numerous codes that can be used to approach the theoretical Shannon limit, which is the maximum information transfer rate of a communication channel for a particular noise level. However, the complexity of these codes prohibits their use in high-speed inter-chip applications. A low-complexity signaling scheme is proposed here. This method can achieve 3-5-dB coding gain over uncoded four-level pulse amplitude modulation (PAM). The receiver for this signaling scheme along with a regular 4-PAM receiver was designed and implemented in a 0.18-mum standard CMOS technology. Experimental results show that the receiver is functional up to 2.5 Gb/s. This was verified with a bit error rate tester (BERT) and we were able to achieve error free operation at 2.5-Gb/s channel transfer rate. The entire receiver for this scheme consumes 22 mW at 2.5 Gb/s and occupies an area of 0.2 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.