Abstract
With technological advancements and scientific progress, mobile robots have found widespread applications across various fields. To enable robots to perform tasks safely and effectively in diverse and unknown environments, this paper proposes a ground medium classification algorithm for robots based on feature fusion and an adaptive spatio-temporal cascade network. Specifically, the original directional features in the dataset are first transformed into quaternion form. Then, spatio-temporal forward and reverse neighbors are identified using KD trees, and their connection strengths are evaluated via a kernel density estimation algorithm to determine the final set of neighbors. Subsequently, based on the connection strengths determined in the previous step, we perform noise reduction on the features using discrete wavelet transform. The noise-reduced features are then weighted and fused to generate a new feature representation.After feature fusion, the Adaptive Dynamic Convolutional Neural Network (ADC) proposed in this paper is cascaded with the Long Short-Term Memory (LSTM) network to further extract hybrid spatio-temporal feature information from the dataset, culminating in the final terrain classification. Experiments on the terrain type classification dataset demonstrate that our method achieves an average accuracy of 97.46% and an AUC of 99.80%, significantly outperforming other commonly used algorithms in the field. Furthermore, the effectiveness of each module in the proposed method is further demonstrated through ablation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.