Abstract
This paper presents a new effective Built-In Self Test (BIST) scheme that achieves 100% fault coverage with low area overhead, and without any modification of the circuit under test (CUT), i.e., no test point insertion. The set of patterns generated by a pseudo-random pattern generator, e.g. a Linear Feedback Shift Register (LFSR), is transformed into a new set of patterns that provides the desired fault coverage. To transform these patterns, a ring architecture composed by a set of masks is used. During on-chip test pattern generation, each mask is successively selected to map the original pattern sequence into a new test sequence. We describe an efficient algorithm that constructs a ring of masks from the test cubes provided by an automatic test pattern generator (ATPG) tool. Moreover, we show that rings of masks are implemented very easily at low silicon area cost, without requiring any logic synthesis tool; a combinational mapping logic corresponding to the masks is placed between the LFSR and the CUT, together with a looped shift register that acts as a mask selecting circuit. Experimental results are given at the end of the paper, demonstrating the effectiveness of the proposed approach in terms of area overhead, fault coverage and test sequence length. Note that this paper is an extended version of [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.