Abstract

The coral reefs and mangrove habitats of the south Florida region have long been used in sea-level studies for the western Atlantic because of their broad geographic extent and composition of sea-level tracking biota. The data from this region have been used to support several very different Holocene sea-level reconstructions (SLRs) over the years. However, many of these SLRs did not incorporate all available coral-based data, in part because detailed characterizations necessary for inclusion into sea-level databases were lacking. Here, we present an updated database comprised of 303 coral samples from published sources that we extensively characterized for the first time. The data were carefully screened by evaluating and ranking the visual taphonomic characteristics of every dated sample within the database, which resulted in the identification of 134 high-quality coral samples for consideration as suitable sea-level indicators. We show that our database largely agrees with the most recent SLR for south Florida over the last ∼7,000 years; however, the early Holocene remains poorly characterized because there are few high-quality data spanning this period. Suggestions to refine future Holocene SLRs in the region are provided including filling spatial and temporal data gaps of coral samples, particularly from the early Holocene, as well as constructing a more robust peat database to better constrain sea-level variability during the middle to late Holocene. Our database and taphonomic-ranking protocol provide a framework for researchers to evaluate data-selection criteria depending on the robustness of their sea-level models.

Highlights

  • The societal implications of projected future sea-level rise are of great concern

  • We suggest that future coral-sampling efforts could target reefs presently situated in deeper water (>10 m below mean sea level (MSL)) that are known to be of early Holocene age, such as those along the extent of the outer reef of the Southeast Florida continental reef tract (SFCRT) and the outlier reefs of the Florida Keys reef tract (FKRT) described above, to address this critical data gap

  • Our 134 Holocene coral sealevel indicators from throughout the Florida reef tract represents a three-fold increase in the number of coral data points compared to the most recently constructed sea-level database (Khan et al, 2017), making it the largest compilation available at present and the only one that has been taphonomically verified

Read more

Summary

Introduction

The societal implications of projected future sea-level rise are of great concern. As humankind contemplates how to cope with future sea-level rise, it has become increasingly clear that a better understanding of the natural variability in the magnitudes and rates of sea-level rise in the past is needed to more accurately predict future scenarios A revised Holocene coral sea-level database from the Florida reef tract, USA. In this regard, examinations of Holocene (last 11,700 years) sea-level rise could provide critical and useful baseline information for researchers to parameterize predictive models and to generate realistic future projections (Horton et al, 2018)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.